000 01491cam a22002897a 4500
001 004460
003 armpuni
005 20160923153929.0
008 160923s1994####xx#a##########000#0#und#d
040 _aarmpuni
_carmpuni
041 _aen
080 _a519.7
100 1 _aHaykin, Simon
245 1 0 _aNeural Networks :
_bA comprehensive Foundation /
_cSimon Haykin
260 _aNew Jersey :
_bPrentice Hall,
_c1994
300 _axvi, 696 p.:
_bil.;, 25 cm.
500 _aApéndices p. 617
500 _aIncluye abreviaciones y símbolos
500 _aProblemas al finald de cada capítulo
550 _aWhat is a neural network?. Learning process. Correlation matrix memory. The perceptron. Least-Mean-Square algorithm. Multilayer perceptrons. Back-propagation and differentiation. Radial-Basis Function networks. Recurrent networks rooted in statistical physics. Self-Organizing systems I: Hebbian learning. Self-organizing systems II: Competitive learning. Self-organizing systems III: Information-theoretic models. Modular networks. Temporal processing. Neurodynamics. VLSI Iplementations of neural networks. Pseudoinverse matrix memory. A general tool for convergence. Analysis of stochastic. Approximation algorithms. Statical thermodynamics. Fokker-plank equation.
650 7 _aAUTOORGANIZACION
_2LEMB
650 7 _aINTELIGENCIA ARTIFICIAL
_2LEMB
650 7 _aNEURAL NETWARKS
_2LEMB
650 7 _aREDES NEURONALES
_2LEMB
942 _cLB
_2cdu
945 _aMDC
_d1999-09-14
999 _c4459
_d5634